Exponent power: More power problems

Use these tables for reference when solving the problems on this page.

2 ¹	2
2 ²	4
2 ³	8
2 ⁴	16
2 ⁵	32
2 ⁶	64
27	128
2 ⁸	256
2 ⁹	512
2 ¹⁰	1 024
211	2 048
212	4 096
2 ¹³	8 192
214	16 384

3 ¹	3
3 ²	9
3 ³	27
3 ⁴	81
3 ⁵	343
3 ⁶	729
3 ⁷	2 187
3 ⁸	6 561
3 ⁹	19 683
3 ¹⁰	59 049
3 ¹¹	177 147
3 ¹²	531 441
3 ¹³	1 594 323
3 ¹⁴	4 782 969

5 ¹	5
5 ²	25
5 ³	125
5 ⁴	625
5 ⁵	3 125
5 ⁶	15625
5 ⁷	78125
5 ⁸	390 625
5 ⁹	1 953 125
5 ¹⁰	9 765 625
5 ¹¹	48 828 125
5 ¹²	244 140 625
5 ¹³	1 220 703 125
5 ¹⁴	6 103 515 625

- 1. Find as many pairs of factors as you can that multiply to 2048, e.g. $2 \times 1024 = 2048$
- 2. If $25^2 = 625$, how do you find the square of numbers in these tables?
- 3. If the square root of 81 is 9 ($\sqrt{81}$ =9), how can you find the square root of numbers in these tables?
- 4. Try dividing a power of two by a different power of two.

For example, $4096 \div 512 =$

Is the answer always in the table? Why? Does that work for powers of three and five?