Bean Counters

Activity

1. Aronui uses beans and canisters to help her work out **5 x 20**.

How does Aronui use the fact she knows $(5 \times 2 = 10)$ to solve 5×20 ?

2. Now Aronui wants to work out **5 x 17**. She takes 3 beans out of each group and lays them on the table.

- a. In each group, how many beans are still in the canisters?
- b. How many beans altogether are lying on the table?
- c. Aronui knows how to work out 5×20 . How can she use this to work out 5×17 ?

- Aronui makes 3 groups of 20 to help her solve **3 x 18**.
 - How many beans does she have altogether in her 3 groups of 20?
 - Aronui takes 2 beans out of each group.

How can she use the beans she has taken out of the canisters to work out 3 x 18?

> Don't forget that each full canister has 10 beans in it.

- Aronui makes 3 groups of 30 to help her solve **3 x 29**.
 - How many beans does she have altogether in her 3 groups of 30?
 - Draw a picture of what Aronui's beans and canisters would look like after b. she takes out some beans to leave 3 groups of 29 inside the canisters.
 - How could Aronui use the beans she has taken out of the canisters to work out 3 x 29?
- Aronui decides that she doesn't need to use beans and canisters any more.

I know that $5 \times 100 = 500$, so I can use my strategy to solve 5 x 98.

What would she do to solve 5 x 98?

Write a problem that could be solved easily using Aronui's strategy and solve it. Swap your problem with a classmate's.