Powerful Thought

ACTIVITY

1. Hamid and Isabel were talking about how they worked out 2⁶.

I went 2 x 2 = 4, $4 \times 2 = 8$, $8 \times 2 = 16$, $16 \times 2 = 32$, $32 \times 2 = 64$. It took ages!

I thought 2 x 2 x 2 x 2 x 2 x 2 x 2 would be the same as 8 x 8, and it was!

- a. Explain why 2 x 2 x 2 x 2 x 2 x 2 gives the same product as 8 x 8.
- How do you think 3⁴ could be worked out quickly using Isabel's idea? b.

2. Hamid and Isabel made this table showing powers of 2:

2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶	2 ⁷	2 ⁸	2 ⁹	2 ¹⁰
2	4	8	16	32	64	128	256	512	1 024

That's interesting ... 4 x 8 = 32 and $2^{2} \times 2^{3} = 2^{5}$, which is 32.

> And $2^2 \times 2^5 = 2^7$, which is the same as 4 x 32.

- **a.** They decided to investigate these equations: i. $2^1 \times 2^5 = 2^6$ ii. $2^3 \times 2^4 = 2^7$ iii. $2^5 \times 2^5 = 2^{10}$ Check whether each equation is true.
- **b.** Is there a pattern in these equations? If so, describe it.
- Make up a table showing the powers of 3 up to 3^{10} . 3. a.

- **b.** i. Does $3^2 \times 3^4 = 3^6$? ii. Does $3^5 \times 3^3 = 3^8$? Explain your answers.